Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

- o The select operation selects tuples that satisfy a given predicate.
- o It is denoted by sigma (σ).

Notation: $\sigma p(r)$

Where:

 σ is used for selection prediction \mathbf{r} is used for relation \mathbf{p} is used as a propositional logic formula which may use connectors like: AND OR and NOT. These relational can use as relational operators like =, \neq , \geq , <, >, \leq .

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-14	1500
Mianus	L-13	500
Roundhill	L-11	900
Perryride	L-16	1300

Input:

 σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME	LOAN_NO	AMOUNT
Perryride	L-15	1500
Perryride	L-16	1300

2. Project Operation:

• This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.

o It is denoted by \prod .

Notation: \prod A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME	STREET	СІТҮ
Jones	Main	Harrison
Smith	North	Rye
Hays	Main	Harrison
Curry	North	Rye
Johnson	Alma	Brooklyn
Brooks	Senator	Brooklyn

Input:

□ NAME, CITY (CUSTOMER)

Output:

NAME	СІТҮ
Jones	Harrison

Smith	Rye
Hays	Harrison
Curry	Rye
Johnson	Brooklyn
Brooks	Brooklyn

3. Union Operation:

- 0 Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R & S.
- o It eliminates the duplicate tuples. It is denoted by $\boldsymbol{\upsilon}.$
- 0 Notation: R U S

A union operation must hold the following condition:

- R and S must have the attribute of the same number.
- o Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121

Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

Input:

□ CUSTOMER_NAME (BORROW) ∪ □ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME
Johnson
Smith
Hayes
Turner
Jones
Lindsay
Jackson
Curry
Williams
Mayes

4. Set Intersection:

- 0 Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R & S.
- o It is denoted by intersection n.

Notation: $R \cap S$

Example: Using the above DEPOSITOR table and BORROW table

Input:

□ CUSTOMER_NAME (BORROW) ∩ □ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME	
Smith	
Jones	

5. Set Difference:

- Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S.
- o It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

□ CUSTOMER_NAME (BORROW) - □ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME
Jackson
Hayes

Willians		
Curry		

6. Cartesian product

- The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
- o It is denoted by X.

Notation: E X D

Example:

EMPLOYEE

EMP_ID	EMP_NAME	EMP_DEPT
1	Smith	А
2	Harry	С
3	John	В

DEPARTMENT

DEPT_NO	DEPT_NAME	
А	Marketing	

В	Sales
С	Legal

Input:

EMPLOYEE X DEPARTMENT

Output:

EMP_ ID	emp_na Me	EMP_D EPT	DEPT_ NO	dept_na Me
1	Smith	A	A	Marketi ng
1	Smith	A	В	Sales
1	Smith	А	С	Legal
2	Harry	С	A	Marketi ng
2	Harry	С	В	Sales
2	Harry	С	С	Legal
3	John	В	A	Marketi ng
3	John	В	В	Sales

3	John	В	С	Legal
---	------	---	---	-------