Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

o The select operation selects tuples that satisfy a given predicate.
o It is denoted by sigma (σ).

Notation: $\sigma \mathrm{p}(\mathrm{r})$

Where:

$\boldsymbol{\sigma}$ is used for selection prediction
\mathbf{r} is used for relation
\mathbf{p} is used as a propositional logic formula which may use connectors like:
AND OR and NOT. These relational can use as relational operators like $=, \neq$, $\geq,<,>, \leq$.

For example: LOAN Relation

BRANCH_NAME
 LOAN_NO
 AMOUNT

Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-13	500
Mianus	L-11	900
Roundhill	L-16	1300
Perryride		

Input:

σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME	LOAN_NO	AMOUNT
Perryride	L-15	1500
Perryride	L-16	1300

2. Project Operation:

o This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.
o It is denoted by Π.

Notation: П A1, A2, An (r)

Where

$\mathbf{A 1}, \mathbf{A 2}, \mathbf{A 3}$ is used as an attribute name of relation \mathbf{r}.

Example: CUSTOMER RELATION

NAME	STREET	CITY
Jones	Main	Harrison
Smith	North	Rye
Hays	Main	Harrison
Curry	Alma	Rye
Johnson	Senator	Brooklyn
Brooks		

Input:

П NAME, CITY (CUSTOMER)

Output:

NAME	CITY
Jones	Harrison

Smith	Rye
Hays	Harrison
Curry	Rye
Johnson	Brooklyn
Brooks	Brooklyn

3. Union Operation:

o Suppose there are two tuples R and S . The union operation contains all the tuples that are either in R or S or both in $R \& S$.

0 It eliminates the duplicate tuples. It is denoted by u .
o Notation: R U S

A union operation must hold the following condition:
o R and S must have the attribute of the same number.
o Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121

Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-93
Curry	L-11
Smith	
Williams	

Input:

Π CUSTOMER_NAME (BORROW) U П CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME
Johnson
Smith
Hayes
Turner
Jones
Lindsay
Jackson
Curry
Williams
Mayes

4. Set Intersection:

o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R \& S.

0 It is denoted by intersection \cap.

Notation: R $\cap \mathrm{S}$
Example: Using the above DEPOSITOR table and BORROW table Input:
Π CUSTOMER_NAME (BORROW) $\cap \Pi$ CUSTOMER_NAME (DEPOSITOR)

Output:

5. Set Difference:

o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S .

0 It is denoted by intersection minus (-).

Notation: R - S
Example: Using the above DEPOSITOR table and BORROW table

Input:

П CUSTOMER_NAME (BORROW) - П CUSTOMER_NAME (DEPOSITOR)
Output:

CUSTOMER_NAME
Jackson
Hayes

Willians

Curry

6. Cartesian product

o The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
o It is denoted by X.

Notation: EXD

Example:

EMPLOYEE

EMP_ID	EMP_NAME	EMP_DEPT
1	Smith	A
2	Harry	C
3	John	B

DEPARTMENT

DEPT_NO	DEPT_NAME
A	Marketing

B	Sales
C	Legal

Input:

EMPLOYEE X DEPARTMENT
Output:

EMP_ ID	$\begin{aligned} & \text { EMP_NA } \\ & \text { ME } \end{aligned}$	EMP_D EPT	$\begin{aligned} & \text { DEPT_ } \\ & \text { NO } \end{aligned}$	DEPT_NA ME
1	Smith	A	A	Marketi ng
1	Smith	A	B	Sales
1	Smith	A	C	Legal
2	Harry	C	A	Marketi ng
2	Harry	C	B	Sales
2	Harry	C	C	Legal
3	John	B	A	Marketi ng
3	John	B	B	Sales

3	John	B	C	Legal

